
30

The Research Monograph Series in Computing, Electrical & Communication Networks
Vol. 1 (01), April 2023, pp. 30–41

CHAPTER 5

RESULTS AND DISCUSSIONS

5.1 INTRODUCTION

This thesis centers on the automated generation of performance feedback
in software architectures with the purpose of interpreting the results
of the performance for the analysis. The research progresses on by
suggesting most suitable architectural reconfigurations methodology that
has been devised by keeping track of the performance knowledge.

5.2 THROUGHPUT UTILIZATION ANALYSIS

In Figure 5.1, the throughput is reported and utilization obtained is
shown in Figure 5.2, These refer to CPU and DISKS with a fixed thinking
time of z = 1s while the number of clients N in the system. It can be
noted that the same numerical results are obtained which supports the
correctness of the transformation of the description into the queuing
network model. The two tower solver (Marco Bernardo et al., 2011)
which is unable to solve models with more than seven clients has
results tackled as two towers. This is because the state space explosion
phenomenon encompass during the time when the solvers handles the
continuous time-Markov chain model.

5.3 PERFORMANCE ANALYSIS

In this section, the performance modeling approaches are described
and developed in order to assess real time performance, task execution
time as a function of the number of system interfaces and the thruster
allocation convergence characteristics. The impact of the number of the
sensors and thrusters on the control loop execution time distribution
is studied by the stochastic analysis model. The thruster allocation
model is executed through the actual implementation approach inside a
performance model to assess the impacts of the number of thrusters on
the convergence characteristics of the thruster’s allocation library. It is
because of the thruster allocation algorithm which is the most critical

 Results and Discussions 31

task in the control loop. Experience with model based Performance,
Reliability, and Adaptability Assessment of a complex industrial
architecture will help out in solving the critical tasks.

5.3.1 Analysis of Real-time

Reasoning about time and temporal characteristics of the system are
allowed by the real time. A 1s period is chosen as a cycle execution.

Figure 5.1 Graph for analyzing throughput.

Figure 5.2 Graph for utilization indices.

32 Refactoring of Software Architectural Design for Performance Optimization

Experiments chosen as a cycle execution, Experiments which are
conducted with a prototype execute each of the tasks independently and
individually. It measures the execution time of a task for each instance
executed.

5.3.2 Analysis of Stochastic Performance

Execution time distribution and its study provides additional insight
into the timing behaviors of the system and it allows to estimate the
quickness of the control loop execution in the most cases (eg: 95%
of all cases). Rare misses of the systems, less conservative estimates
for performance through stochastic analysis is to avoid over sizing of
resources.

In order to show that the control loop deadline is satisfied in the worst
case, the current system design the results from the earlier analysis is
shown. Additional results related to the sensitivity of the control loop
execution time to the vessel configuration is provided by the analysis in
this subsection.

5.3.3 Analysis of Sensitivity

By using the parameterized architecture performance models the impact
of components on the tasks execution times is analyzed in this section.
There are two extension scenarios which are shown here.

Increase of output data and message which is the results of new types
of diagrams or design added for further calculations. These are varying
number of thruster of the vessel. A sensitivity analysis is performed both
extension scenarios by first revalidating the real time performance and
determining time executions by running the system simulation. More
data retrieval tasks need to be executed on the performance level of when
new types of design are added to the system.

5.4 ANALYSIS WITH RELIABILITY MODELING

Beginning from the UML diagrams it shows in this section, to build a
reliability model as it is considered a target reliability on-demand of a
component based system as function of: (1) The reliability of the software
components and connectors. (2) The operational profile – the portability
of invocation of use cases and the inclusion of the number of invocations
of components and connectors (UML) profiles for non-functional
properties at work: analyzing reliability availability and performance.

 Results and Discussions 33

The probability of failure on demand in the original model is expressed as
follows:

� �s k i

bpik
ij

i j k

i

Q

m

M

P1 1 1
11

� � �
�

�
�

�

�
����

��

() () (, ,)� interact

(5.1)

where K is the number of system scenarios;
 Pk is the probability of execution of scenario k;
 js is the failure probability on demand of the whole system;
 ji is the failure probability on demand of a software

component i;
 bpik is the number of busy periods (i.e. invocations) of

component i within scenario k;
 N is the number of software components;
 yij is the failure probability on demand of a software

connector between components i and j;
 interact (i; j; k) is the number of interactions between

components i and j within scenario k (i.e. the number of
times the connector between these two components is
used);

Obtaining such model from annotated UML diagrams has been
illustrated here. Towards making the transformation more explicit and
to produce a model based on reliability notation Equation (5.1) has been
reformulated here as Fault Tree.

Nodes of a Fault Tree are the events and logical operators having the
root contains an undesired effect. The event which could cause this effect
is added to the tree as a series of logic expressions.

5.5 MATHEMATICAL COMPLEXITY AND
NONLINEARITY OF SYSTEM

Architecture based reliability evaluation of software intensive systems
are the outcome of the development of a number of the development of
a number of models and mathematical functionalities. Broadly speaking
architecture based reliability evaluation is treated as mathematical
functions obtained from architecture annotations and configurations
to reliability metrics like mean time to failure (MTTF) failure rate or
failure portability. Estimated parameters are included in the input the

34 Refactoring of Software Architectural Design for Performance Optimization

function. This in turn includes execution of initialization probabilities,
transition probabilities among software components, hardware failure
rates, software failure rates and software failure rates. Certain important
information on structured and behavioral aspects of the system (eg:
dependences of failures among components) are ignored by the use
of simple aggregation functions or linear mathematical formulae in
Table 5.1 and is also presented in Section 2.2. Many researchers including
Gokhale et al., (2009) have optimal and have pointed out for the
requirements of sophisticated mathematical formulations for an accurate
prediction of reliability of a software intensive system, keeping in view its
operational and failure behavior. The comprehensive reliability have been
successfully adopted and used by Markove chains. The reliability metric
becomes a composite effect of many parameters rather than being linear
function, decomposed into individual relationships with the composition
of structural and behavioral aspects into Markovian reliability modules.
A series of complex mathematical operations such as application matrix
and vector operators are required by the reliability evaluation models.
Therefore the mathematical function obtained from the input parameters
to the reliability metric is neither a linear nor simple aggregation
function. So, an architect may find it hard to lack propagate and effect on
the reliability metric to individual parameters.

5.6 ANALYSIS OF TRANSFORMATION

Table 5.2 summarizes the parameterization of the Queuing Network
Model for the ATM case study. The input parameters of the QN are

Table 5.1 Mathematical formulae.

Quality Attribute Quality Model

Reliability Reliability Block diagrams [24,98,109,126,134,141]
Markov Chains [15,34,39,144]
Fault Trees [32,110,125,140]
Dependency Graphs [101,112,119,136]

Performance Aggregation Functions [74,91,51]
Markov Chains [88,92]
Queuing Networks [115,126,150]

Energy consumption Aggregation Functions [71,74,56]
Markov Chains [37,46,51]
State machines [67,94,118,139]

 Results and Discussions 35

reported: the first column contains the service center names, the second
column shows their corresponding service rates for each class of job, i.e.
ClassA and ClassB.

Table 5.3 shows the performance analysis results of the ATM queuing
network model: the first column contains the name of requirements, the
second column reports their required values, their predicted values are
shown in the third column as obtained from the QN solution. It can be
observed that a response time is owned by both services and it does not
fulfill the required ones: The print balance service has been predicted as
1.5 sec, whereas the pin change service has been predicted as 2.77sec.

Table 5.4 shows the performance analysis results are obtained through
the solution of QN models of the new ATM systems (that is ATM1,
ATM2, ATM3) are tried and compared them with the obtained results
from the analysis of the initial systems (i.e., ATM0). The response time of
the pin change service is 2.18 sec, 1.6 sec and 2.24 sec across the different
reconfigurations of ATM architectural model.

• Spearman Rank Correlation
 Spearman’s rank correlation of coefficient is used for identifying

the total amount of strength of correlation among the data set of

Table 5.2 Input Parameters for queuing network model in ATM system.

Service centre

Input parameters

ATM

Class A Class B

LAN 44 msec 44 msec
WAN 208 msec 208 msec
webServerNode 2 msec 4 msec
libraryNode 7 msec 16 msec
controlNode 3 msec 3 msec
db cpu 15 msec 30 msec
db disk 30 msec 60 msec

Table 5.3 Response time requirements for ATM software Architectural Model.

Requirement Required value Predicted Value

Print balance 1.2 sec 1.5 sec
Pin change 2 sec 2.77 sec

36 Refactoring of Software Architectural Design for Performance Optimization

two variables, and check whether the value of correlation is either
positive or negative (Blalock 1960).

� � �

�
�1

6
1

2

2

d
n n

i

()
(5.2)

5.7 REDESIGNING PROCESS RESULTS

A collection of performance indices refers the output of the performance
evaluation stage. The users provide the actual required values. The
comparison is carried out when the results are identified from the evaluation
of the performance model with the requirements provided by the customers.
When the calculated requirements fail to meet the customer’s requirements,
the design changes and the feedback process starts the relationship between
the two values is found by calculating spearman’s coefficient and the
attributes of interdependency of performance are identified.

By comparing the predicted value with the actual value the actual
requirement changes to improve design is indentified by a mathematical
equation. It is used due to the easy calculation and understandability.
Thus the rules are generated on the values derived from the calculations.

 Pijk = β + γj + ψi + pij + ρijk (5.3)

Table 5.4 Performance analysis results.

Requirement
Required

Value
Predicted Value

ATM 0 ATM 1 ATM 2 ATM 3

Print balance 1.2 sec 1.5 sec 1.14 sec 1.15 sec 1.5 sec
Pin change 2 sec 2.77 sec 2.18 sec 1.6 sec 2.24 sec

Table 5.5 Spearman correlation of rank.

Attribute Applicability

Spearman’s rho Pearson correlation
Sig(2-tailed)
N

1.000
–
11

0.664
0.014

11
Applicability Pearson correlation
Sig(2-tailed)
N

0.664
0.014

11

1.000
–
11

 Results and Discussions 37

where, Pijk is a matrix of performance indices observations (with
row index i, column index j, and repetition index k).

 β is a constant matrix of the overall mean of performance
indices.

 γj is a matrix whose columns are the deviations of each
performance indices (from the mean value β) that are
attributable to the architecture model. All values in a given
column of γj are identical, and the values in each row of γj
sum to 0.

 ψi is a matrix whose rows are the deviations of each
performance indices (from the mean value β) that are
attributable to architectural model. All values in a given row of
ψi are identical, and the values in each column of ψi sum to 0.

 pij is a matrix of interactions. The values in each row of pij
sum to 0, and the values in each column of pij sum to 0.

 ρijk is a matrix of random disturbances.

Deriving a simple methodology is to be used for the performance
analysis process and generate simple rules to provide feedback at
the designed level. After analyzing the relationships between various
performance indices the rules are generated. Towards the evaluation,
the research work considers some example architectures design. In
the Table 5.6 the improvements achieved by the generated rules in the
example is summarized.

Calculated response time is shown in the Figure 5.3 in each redesign
round which describes that the response time gets reduced frequently
after the application of the rule.

The response time for each iteration for refactoring and applying the
proposed rules, has shown a better improvement in response time. The

Table 5.6 Response time improvements through application of Rules.

Application No. of
Rounds

Initial
Response
Time (ms)

Improved
Response
Time (ms)

Percentage of
Improvement in
Response Time

ATM machine 4 5678 1997 65.63
CT scan 7 7185 2498 62.10
Railway
Reservation System

13 5452 1931 68.25

Online Banking
Application

12 9564 3465 61.35

38 Refactoring of Software Architectural Design for Performance Optimization

researcher has refactored the design and has shown sign of improvement
in the design which is shown in Figure 5.3. The performance after each
iteration is shown in Figure 5.4.

5.8 VARIOUS PERFORMANCE PREDICTION
METHODS

There have been quite a few numbers of researchers towards developing
a method of an application and including to improve the quality of the
software design.

Table 5.7 summarizes the different researchers moving towards
improving the functional requirements of a system by using the method
of rule generation and application.

It has been revealed in an analysis of the literature that the evidence of the
existence of a framework combining all the steps of performance analysis
has improvement. It also state that there is a very few researchers towards
the direction of application of performance tuning to component based
systems. This research work stands as unique through the introduction of
methodology for design change identification and for suggestions to design
changes towards improving performance, maintainability and reusability.
The comparison of various methods is shown in the Figure 5.5.

Figure 5.3 Improvements of response time by applying rules.

 Results and Discussions 39

Figure 5.4 Comparison of Response time after applying rules.

Table 5.7 Comparison of various performance prediction methods.

S. No. Model Inference Percentage of
Predictability achieved

1 Robocop Prediction based on cost 65
2 Design Tuning

Environment
Prediction based on
distributed systems and
dynamic rules

52.3

3 Rule engine Prediction based on static
rules

57.6

4 CLISSPE Prediction based on expert
systems, client server
systems.

36.8

5 Proposed
framework

Predictions based on
availability, maintenance,
reusability and rule based
system

69.2

40 Refactoring of Software Architectural Design for Performance Optimization

Figure 5.5 Comparison of various methods.

Table 5.8 Ranking of various attributes.

S. No Attribute Name Attribute values Cust
req.

App/
feasi

Optimization
level

1 Response time 1 0.35 0.3 1 9
2 Resource Utilization 4 86 95 5 7
3 Throughput 2 26 35 4 11
4 Timeliness 2 0.2 0.15 1 12
5 Maintainability 4 73 80 5 3
6 Reusability 5 60 70 2 8
7 Modularity 3 67 75 2 10
8 Affordability 5 50 60 5 4
9 Processor Utilization 3 95 95 3 5
10 Schedulability 5 70 75 5 1
11 Interoperability 5 60 70 5 6
12 Resource availability 4 100 100 4 2

 Results and Discussions 41

5.9 SUMMARY

In this section, the effective of the proposed approach has been
demonstrated. The chapter discusses the derived methodology with
the analyzing and estimations of the proposed methodology. Here a
mathematical formula is also derived to find out the probability of the
failure system. It is felt that UML based approaches are better even after
the standardization of queuing network. Addressing either qualitative
or quantitative evaluation unique target formulism for the system
assessment is used which means the software engineers are supported
during the V&V activities. Performance indices are analyzed in this
chapter i.e., utilization, throughput and response time according to
iterations and system schedule. The forward path from software model to
performance indices is represented by the modeling and analysis phases.
Various approaches have been introduced towards model transformation
and development of many performance model solvers. On the other
hand, it can be noticed that there is a lack of automation and feedback
models for elaborating and analyzing the results.

